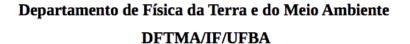


UNIVERSIDADE FEDERAL DA BAHIA

Instituto de Física



Física Geral Teórica I - FISD36

Notas de Aulas: Módulo V

ALANNA DUTRA, EDVALDO SUZARTHE

E REYNAM PESTANA

09 de novembro de 2020

Salvador, Bahia, Brasil

E-mails: alannacd@ufba.br, esaraujo@ufba.br, reynam@ufba.br

Índice

нсе	e de Figuras
ľ	Momento linear e colisões
1.1	Momento linear
1.2	P. Centro de massa
1.3	B Impulso de uma Força
1.4	Colisão unidimensional
	1.4.1 Colisão elástica
	1.4.2 Colisão inelástica
1.5	S Colisão em duas dimensões
1.6	Exercícios Resolvidos
1.7	Resumo

4 Índice

Índice de Figuras

1.1	Colisão entre dois carros (Serway, 2018)	7
1.2	Conservação do momento linear do sistema: (a) antes da colisão; (b) durante a colisão	
	e (c) depois da colisão	8
1.3	Uma colisão elástica não frontal entre dois corpos. O corpo de massa m_2 (o alvo)	
	está inicialmente em repouso	15
1.4	Trajetória parabólica do CM	17

Índice de Figuras

1

Momento linear e colisões

Neste módulo apresentamos o conceito de momento linear, centro de massa, impulso de uma força e a lei de conservação do momento do linear. Esses conceito são muitos importantes para analisar os problemas de colisões de objetos (partículas), sem o conhecimento detalhado das forças envolvidas. Na Figura 1.1, apresentamos um exemplo de colisão de dois carros, onde os conceitos mencionados anteriormente, nos ajudam a entender e analisar o que aconteceu de uma forma simples, apesar da complexidade do problema.

1.1 Momento linear

Na formulação original da segunda lei da dinâmica, Newton começou definindo um grandeza denominada de momento linear (também chamada de quantidade de movimento). A definição de Newton do vetor momento linear (\vec{p}) é:

$$\vec{p} = m\vec{v} . \tag{1.1}$$

Figura 1.1: Colisão entre dois carros (Serway, 2018).

Se a massa m não varia com o tempo e derivando a equação (1.1) em relação ao tempo, obtemos:

$$\frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a} = \vec{F} \quad (\text{segunda lei de Newton}) . \tag{1.2}$$

Então, observamos que a força resultante, é a taxa de variação temporal do momento. Vamos agora analisar um problema de colisão entre duas partículas usando o conceito de momento linear. Considere as duas partículas apresentadas na Figura 1.2(a), que estão em rota de colisão. Analisando o sistema composto pelas duas partículas antes, durante e depois da colisão temos que

$$\vec{F}_{res} = \vec{0} \,, \tag{1.3}$$

onde \vec{F}_{res} denota força a resultante sobre o sistema. Logo, podemos concluir que:

$$\vec{F}_{res} = \frac{d\vec{P}}{dt} = \frac{d(\vec{p}_1 + \vec{p}_2)}{dt} = \vec{0} ,$$
 (1.4)

ou seja, o momento linear do sistema se conserva, $\vec{P}_{antes} = \vec{P}_{devois}$.

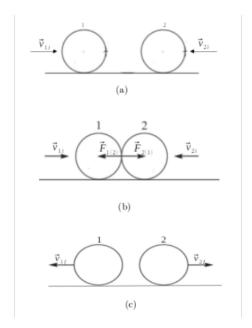


Figura 1.2: Conservação do momento linear do sistema: (a) antes da colisão; (b) durante a colisão e (c) depois da colisão.

Quando observamos cada partícula durante a colisão, elas experimentam forças de contato, mas pela terceira de Newton $\vec{F}_{1(2)} + \vec{F}_{2(1)} = \vec{0}$. Podemos, assim, generalizar a discussão sobre conservação do momento linear de forma a considerar forças externas atuando sobre as partículas 1 e 2, ou seja:

$$\frac{d\vec{p}_1}{dt} = \vec{F}_{1(2)} + F_1^{(ext)} , \qquad (1.5)$$

$$\frac{d\vec{p_1}}{dt} = \vec{F}_{2(1)} + F_2^{(ext)} \ . \tag{1.6}$$

Somando as equações (1.5) e (1.6), temos

$$\frac{d\vec{P}}{dt} = \vec{F}^{ext} \,, \tag{1.7}$$

1.2 Centro de massa 9

onde $\vec{F}^{(ext)} = \vec{F}_1^{(ext)} + \vec{F}_2^{(ext)}$ e $\vec{P} = \vec{p}_1 + \vec{p}_2$. Se $\vec{F}^{(ext)} = \vec{0}$, temos que

$$\frac{d\vec{P}}{dt} = \vec{0} \quad \to \quad \vec{P}_{antes} = \vec{P}_{depois}. \tag{1.8}$$

No sistema de coordenadas cartesiano, a equação (1.8) se desdobra em três equações:

$$\begin{split} P_{(x,antes)} &= P_{(x,depois)} \\ P_{(y,antes)} &= P_{(y,depois)} \\ P_{(z,antes)} &= P_{(z,depois)} \end{split} \tag{1.9}$$

A condição necessária e suficiente para que o momento linear total de um sistema se conserve é que a a resultante das forças externas aplicadas ao sistema se anule.

Uma vez que a lei de conservação do momento linear foi derivado das leis de Newton, ela é válida em qualquer sistema de referência inercial. A lei da conservação do momento linear está associada com a simetria espacial da natureza (Resnick, Halliday e Krane, 2003).

Na próxima seção, vamos discutir de forma objetiva o conceito centro de massa. Esse conceito vai nos ajudar a entender vários problemas físicos complexos, como por exemplo, uma explosão de uma granada, onde depois da explosão a granada é separada em várias partes.

1.2 Centro de massa

Em relação a um referencia inercial, o vetor posição do **centro de massa** de um sistema de N partículas é definido como:

$$\vec{R}_{CM} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r}_i , \qquad (1.10)$$

onde a massa total $M = \sum_{i=1}^{N} m_i$, m_i é a massa de cada partícula e \vec{r}_i é o vetor posição de cada partícula, que no sistema de coordenadas cartesiano é escrito:

$$\vec{r}_i = x_i \hat{i} + y_i \hat{j} + z_i \hat{k} . {(1.11)}$$

Lembrando que se as partículas estiverem em movimento, então, o vetor \vec{R}_{CM} varia no tempo.

Supondo que a massa M do sistema de partículas permaneça constante, a velocidade do centro de massa é dada por:

$$\vec{V}_{CM} = \frac{d\vec{R}_{CM}}{dt} = \frac{1}{M} \sum_{i=1}^{N} m_i \frac{d\vec{r}_i}{dt} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{v}_i . \tag{1.12}$$

e o momento linear do CM é dado por

$$M\vec{V}_{CM} = \sum_{i=1}^{N} m_i \vec{v}_i = \sum_{i=1}^{N} \vec{p}_i = \vec{P}_{CM} .$$
 (1.13)

Derivando a equação (1.13) em relação ao tempo, resulta em:

$$M\vec{a}_{CM} = \sum_{i=1}^{N} m_i \vec{a}_i = \sum_{i=1}^{N} \vec{F}_i = \vec{F}_{CM} ,$$
 (1.14)

onde podemos observar a segunda lei de Newton para o centro de massa e que apenas forças externas, que atuam sobre o sistema, podem alterar o movimento do centro de massa. Enquanto as forças internas aparecem aos pares obedecendo à terceira lei de Newton. Portanto, essas forças se cancelar aos pares ao somarmos suas contribuições no cálculo da força resultante sobre o centro de massa do sistema.

Podemos, assim, verificar que o centro de massa de um sistema de partículas, tendo massa M, move-se como uma partícula equivalente de massa M se moveria sob influência da força externa resultante sobre o sistema.

Explosão de projétil

Uma granada que está caindo verticalmente explode em dois fragmentos iguais quando se encontra a uma altura de 2000 m e tem uma velocidade para baixo de 60 m/s. Imediatamente após a explosão, um dos fragmentos está se movendo para baixo com velocidade de 80 m/s . Determine a posição do centro de massa do sistema 10 s depois da explosão.

Solução: 1º Método: Desde que sabemos que as forças externas não variaram devido à explosão, o centro de massa continua a se mover como se não tivesse havido explosão. Assim, depois da explosão, o centro de massa estará a uma altura dada por:

$$z = z_o + v_o t + \frac{1}{2}gt^2 = 2000 - (60m/s)(10s) - (4,9m/s^2)(10s)^2 = 910 m.$$

2º Método: Calculamos diretamente a posição do centro de massa a partir das posições do fragmentos 10 s após a explosão. Usando a equação (1.13), podemos determinar a velocidade do segundo fragmento, ou seja, (ver figura abaixo):

$$mV_{CM} = \frac{m}{2}v_1 + \frac{m}{2}v_2 \rightarrow 2(-60m/s) = (-80m/s) + v_2 \rightarrow v_2 = -40m/s$$
.

No instante t=10 s, os fragmentos 1 e 2 têm suas posições dadas por:

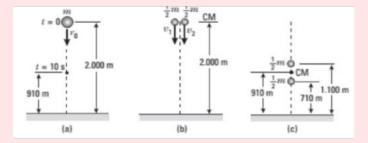
$$z_1 = z_o + v_{1i}t + \frac{1}{2}gt^2 = 2000 - (80m/s)(10s) - (4,9m/s^2)(10s)^2 = 710 m.$$

е

$$z_2 = z_o + v_{2i}t + \frac{1}{2}gt^2 = 2000 - (40m/s)(10s) - (4,9m/s^2)(10s)^2 = 1110 m.$$

Usando a equação (1.10), temos:

$$Z_{CM} = \frac{\frac{m}{2}z_1 + \frac{m}{2}z_2}{m} = \frac{710 + 1110}{2} = 910 \ m.$$



1.3 Impulso de uma Força

Impulso é a grandeza física que mede a variação da quantidade de movimento de um objeto. É causado pela ação de uma força \vec{F} atuando durante um intervalo de tempo Δt . Uma pequena força aplicada durante muito tempo pode provocar a mesma variação de quantidade de movimento que uma força grande aplicada durante pouco tempo. Ambas as forças provocarão o mesmo impulso. A unidade para o impulso, no Sistema Internacional (SI), é o newton segundo (N.s) ou newton vezes segundo.

O momento de um corpo, que se comporta como uma partícula, permanece constante, a menos que o corpo seja submetido a uma força externa. Para mudar o momento do corpo, podemos, por exemplo, empurrá-lo. Também podemos mudar o momento do corpo de modo mais violento, fazendo-o colidir com um taco de beisebol, por exemplo. Em uma colisão, a força exercida sobre o corpo é de curta duração, tem um módulo elevado e provoca uma mudança brusca do momento do corpo. O **impulso** I é definido como sendo igual à variação da quantidade de movimento $\Delta \vec{p}$ de um corpo:

$$\vec{I} = \Delta \vec{p} \tag{1.15}$$

Em situações onde a força mostra-se constante ao longo do intervalo de atuação, o impulso pode também ser calculado a partir do produto entre a força F aplicada ao corpo e o intervalo de tempo Δt durante o qual a força atua.

$$\vec{I} = \vec{F}\Delta t \tag{1.16}$$

Em situações mais complicadas - onde a força resultante F(t) atuando no corpo é variável - a equação anterior contudo não se aplica. Deve-se determinar o impulso nestes casos pela integração de F(t) no tempo:

$$\vec{I} = \int \vec{F}(t)dt \tag{1.17}$$

Colisões ocorrem frequentemente, mas, antes de discutir situações mais complexas, vamos falar de um **tipo simples de colisão** em que um corpo se comporta como uma partícula (projétil) e colide com outro corpo que se comporta como outra partícula (alvo).

Suponha que o projétil seja uma bola, e o alvo seja um taco. A colisão dura pouco tempo, mas a força que age sobre a bola é suficiente para inverter o movimento. A bola sofre a ação de uma força F(t) que varia durante a colisão e muda o momento linear da bola. A variação está relacionada à força por meio da segunda lei de Newton, escrita na forma $\vec{F} = d\vec{p}/dt$. Assim, no intervalo de tempo dt, a variação do momento da bola é dada por:

$$d\vec{p} = \vec{F}(t)dt \tag{1.18}$$

Podemos calcular a variação total do momento da bola provocada pela colisão integrando ambos os membros da Equação 1.18 de um instante t_i , imediatamente antes da colisão, até um instante t_f , imediatamente após a colisão:

$$\int_{t_i}^{t_f} d\vec{p} = \int_{t_i}^{t_f} \vec{F}(t)dt$$
 (1.19)

O lado esquerdo da Eq. (1.19) nos dá a variação do momento: $\vec{p}_f - \vec{p}_i = \Delta \vec{p}$. O lado direito nos dá o **Impulso**. A Equação 1.19 também pode ser reescrita como:

$$\Delta \vec{p} = \vec{I} \tag{1.20}$$

$$\vec{p_f} - \vec{p_i} = \vec{I} \tag{1.21}$$

E na forma de componentes:

$$\Delta p_x = I_x \tag{1.22}$$

$$p_{fx} - p_{ix} = \int_{t_i}^{t_f} F_x dt \tag{1.23}$$

(1.24)

$$\Delta p_y = I_y \tag{1.25}$$

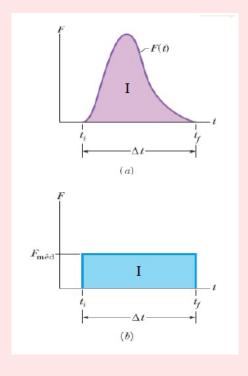
$$p_{fy} - p_{iy} = \int_{t_i}^{t_f} F_y dt \tag{1.26}$$

Integração de uma força

Se a função $\vec{F}(t)$ for conhecida, podemos calcular o Impulso (\vec{I}) integrando a função, e obter, portanto, a variação do momento. Se temos um gráfico de F em função do tempo t, podemos obter o Impulso calculando a área entre a curva e o eixo t, como na figura ao lado.

Em muitas situações, não sabemos como a força varia com o tempo, mas conhecemos o módulo médio da força $(F_{\rm méd})$ e a duração $\Delta t = (t_f - t_i)$ da colisão. Nesse caso, podemos escrever o módulo do impulso, como temos na figura (b), que mostra a força média em função do tempo. A área sob a curva nesse gráfico é igual à área sob a curva da força real na figura (a), uma vez que as duas áreas são iguais a I, o módulo do impulso.

Nas figuras: Em (a), a curva mostra o módulo da força dependente do tempo F(t) que age sobre a partícula na colisão. O módulo do Impulso (\vec{I}) da colisão é igual à área sob a curva; Em (b), a força média produz a



mesma área sob a curva. A altura do retângulo representa a força média $F_{\text{méd}}$ que age sobre a partícula no intervalo Δt . A área do retângulo é igual à área sob a curva do item (a) e, portanto, também é igual ao módulo do impulso durante a colisão.

1.4 Colisão unidimensional

Nesta seção, vamos analisar o que acontecem com duas partículas quando colidem. O termo **colisão** representa um evento durante o qual duas partículas se aproximam uma das outros e interagem por meio de forças. As forças de interação são consideradas muito maiores que quaisquer outras forças externas presentes.

1.4.1 Colisão elástica

Na colisão elástica, é considerado que a energia cinética e o momento linear do sistema se conservam. Considerando o exemplo apresentado na Figura (1.2), temos as seguintes equações para o caso de uma colisão do tipo elástica:

$$T_i = T_f \rightarrow \frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$
 (1.27)

е

$$p_i = p_f \rightarrow m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$
 (1.28)

Resolvendo as equações (1.27) e (1.28), temos as seguintes expressões para determinar as velocidades finais conhecendo as velocidades iniciais e as massas das partículas:

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i} \tag{1.29}$$

e

$$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i} \tag{1.30}$$

Vamos agora analisar os casos particulares. Considerando que as massas são iguais, $m_1=m_2=m$, resulta:

$$v_{1f} = v_{2i} \quad e \quad v_{2f} = v_{1i} \ . \tag{1.31}$$

Considerando que $v_{2i} = 0$ (partícula 2 em repouso), resulta em:

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} \tag{1.32}$$

e

$$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} \ . \tag{1.33}$$

Se $m_1 >> m_2$ e considerando $v_{2i} = 0$, vemos nas equações (1.32) e (1.33) que $v_{1f} \approx v_{1i}$ e $v_{2f} \approx 2v_{1i}$. Isto é, quando uma partícula muito pesada colide frontalmente com uma muita leve inicialmente em repouso, a primeira continua seu movimento inalterado depois da colisão, e a segunda ricocheteia com velocidade escalar igual a cerca de duas vezes a velocidade escalar da pesada. Um exemplo de tal colisão é a de um átomo pesado em movimento, como o urânio, atingindo um átomo leve, como hidrogênio (Serway e Jewett, 2018). Já no caso de $m_1 << m_2$ e $v_{2i} = 0$, então $v_{1f} \approx -v_{1i}$ e $v_{2f} \approx 0$.

1.4.2 Colisão inelástica

A colisão inelástica se refere a situação onde a energia cinética do sistema não se conserva. Considerando que a força resultante que atua sobre sistema é nula, então podemos afirmar que na colisão inelástica temos a conservação do momento linear. Logo:

$$p_i = p_f \rightarrow m_1 v_{1i} + m_1 v_{2i} = m_1 v_{1f} + m_1 v_{2f} ,$$
 (1.34)

. No caso da colisão totalmente inelástica, pela conservação do momento temos:

$$p_i = p_f \rightarrow m_1 v_{1i} + m_1 v_{2i} = (m_1 + m_2) v_f$$
, (1.35)

e a velocidade final é dado por

$$v_f = \frac{m_1 v_{1i} + m_2 v_{2i}}{m_1 + m_2} \,. \tag{1.36}$$

Pêndulo balístico

Pêndulo balístico é um instrumento utilizado para medir a velocidade de balas de arma de fogo. Um projétil de massa m_1 é atirado em um grande bloco de madeira de massa m_2 suspenso por alguns cabos leves. O projétil entra no bloco e o sistema inteiro atinge uma altura h (ver figura abaixo). Como podemos determinar a velocidade escalar do projétil a partir da medida da altura h?

Solução: A colisão totalmente inelástica da bala com o bloco dura um tempo tão curto que não dá tempo para o pêndulo se elevar apreciavelmente nesse intervalo, de modo que podemos tratá-la como processo unidimensional. Pela equação (1.36) temos:

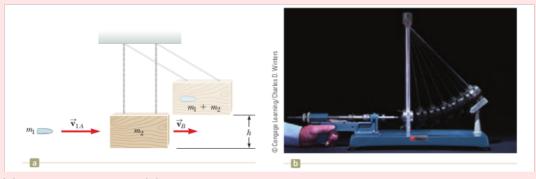
$$v_{1A} = \left(\frac{m_1 + m_2}{m_1}\right) v_B \ .$$

Para determinar v_B , vamos usar conservação da energia mecânica na segunda parte do problema. Imediatamente após a colisão, o conjunto bala + bloco começa a se movimentar e o conjunto alcança uma altura h. Assim, pela conservação da energia mecânica temos:

$$\frac{1}{2}(m_1 + m_2)v_B^2 = (m_1 + m_2)gh \quad \to \quad v_B = \sqrt{2gh}$$

Assim, a velocidade v_{1A} é determinada por:

$$v_{1A} = \left(\frac{m_1 + m_2}{m_1}\right) \sqrt{2gh} \ .$$



(a) Pêndulo balístico. (b)Fotografia de um pêndulo balístico utilizado em laboratório (Serway e Jewett, 2018).

1.5 Colisão em duas dimensões

Quando uma colisão não é frontal, a direção do movimento dos corpos é diferente antes e depois da colisão; entretanto, se o sistema é fechado e isolado, o momento linear total continua a ser conservado nessas colisões bidimensionais:

$$\vec{p}_{i1} + \vec{p}_{i2} = \vec{p}_{f1} + \vec{p}_{f2} \tag{1.37}$$

A Eq. 1.37 é utilizada na maioria dos casos para analisar uma colisão bidimensional. Sua utilização pode ser facilitada quando escrevemos a equação em termos das componentes em relação a um sistema de coordenadas x-y.

A Figura.1.3 mostra uma colisão não frontal entre um projétil e um alvo inicialmente em repouso. As trajetórias dos corpos após a colisão fazem ângulos θ_1 e θ_2 com o eixo x, que coincide com a direção de movimento do projétil antes da colisão.

Nessa situação, a componente em relação ao eixo x da Eq. 1.37 é:

$$m_1 vi1 = m_1 v_{f1} \cos \theta_1 + m_2 v_{f2} \cos \theta_2$$
 (1.38)

e a componente ao longo do eixo y é:

$$0 = -m_1 v_{f1} \operatorname{sen} \theta_1 + m_2 v_{f2} \operatorname{sen} \theta_2 \qquad (1.39)$$

Se a colisão também é elástica, a energia cinética total também é conservada:

$$K_{i1} + K_{i2} = K_{f1} + K_{f2} \tag{1.40}$$

Daí temos que:

$$\frac{1}{2}m_1v_{i1}^2 + \frac{1}{2}m_2v_{i2}^2 = \frac{1}{2}m_1v_{f1}^2 + \frac{1}{2}m_2v_{f2}^2$$
(1.41)

Nesta seção vimos que no caso de um sistema isolado no qual ocorre uma colisão bidimensional:

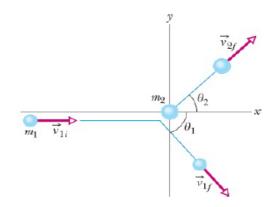


Figura 1.3: Uma colisão elástica não frontal entre dois corpos. O corpo de massa m_2 (o alvo) está inicialmente em repouso.

- (a) Aplicamos a lei de conservação do momento a dois eixos de um sistema de coordenadas para relacionar as componentes do momento antes da colisão com as componentes do momento depois da colisão;
- (b) No caso de um sistema isolado, no qual ocorre uma colisão elástica bidimensional, podemos aplicar a lei de conservação do momento e aplicar o princípio de conservação da energia cinética para relacionar as energias cinéticas antes e depois da colisão.

1.6 Exercícios Resolvidos

Exemplo 1

Uma partícula de 3,00 kg e com vetor velocidade dado por $(3,00\hat{i}+4,00\hat{j})$ m/s.

- (a) Encontre as componentes x e y do momento;
- (b) Encontre o módulo e a direção de seu momento.

Solução:

$$m = 3.00 \text{ kg e v} = (3.00\hat{i} + 4.00\hat{j}) \text{ m/s}.$$

(a)
$$\mathbf{p} = mv = (9.00\hat{i} + 12.00\hat{j}) \text{ kg . m/s.}$$

$$p_x = 9,00kg.m/s$$
$$p_y = 12,00kg.m/s$$

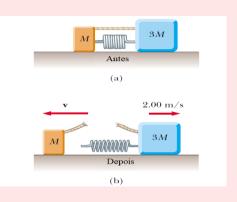
(b)

$$p = \sqrt{p_x^2 + p_y^2} = \sqrt{9,00^2 + 12,00^2} = 150kg.m/s$$
$$\theta = tan^{-1}\frac{p_y}{p_x} = tan^{-1}(-1,33) = 307^o$$

Exemplo 2

Dois blocos de massas M e 3M são colocados na horizontal, superfície sem atrito. Uma mola está presa a um deles, e os blocos são empurrados juntos com a mola entre eles (Figura ao lado). Uma corda inicialmente segurando os blocos juntos é cortada; depois disso, o bloco de massa 3M move-se para a direita com uma velocidade de 2,00 m/s.

- (a) Qual é a velocidade do bloco de massa M?
- (b) Encontre a energia potencial elástica original na mola se $M=0.350~\mathrm{kg}.$



Solução:

(a) Para o sistema de dois blocos, temos que $\Delta p = 0$ ou $p_i = p_f$. Portanto,

$$0 = Mv_M + (3M)(2,00m/s) \Rightarrow v_M = -6,00m/s$$

(b)
$$\frac{1}{2}kx^2 = \frac{1}{2}Mv_M^2 + \frac{1}{2}(3M)v_{3M}^2 = 8,40J$$

17

Exemplo 3

Um projetil de massa 9,6 kg é lançado a partir do solo com velocidade inicial de 12,4 m/s com um ângulo de 540 em relação à horizontal. Decorrido um tempo desde o lançamento, uma explosão divide o projétil em dois pedaços. Um pedaço, com 6,5 kg de massa, é observado 1,42 s após o lançamento, a uma altura de 5,9 m e a uma distância horizontal de 13,6 m, avaliadas a partir do ponto de lançamento. Determine a localização do segundo fragmento no mesmo instante.

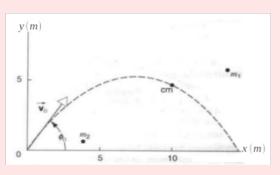


Figura 1.4: Trajetória parabólica do CM.

Solução:

No instante t=1,42s após o lançamento, o centro de massa dos dois fragmentos deve estar na mesma localização que o projetil original estaria, se ele não tivesse explodido. O que levou a explosão do projetil foram forças internas, e estas não alteram o movimento do centro de massa. Portanto, primeiramente determina-se esta localização. A localização do projetil original em $t=1,42\,s$ pode ser determinada utilizando as equações:

$$x_{cm} = v_{ox}t = 12,4 \ (m/s) \cos 54^{0} \ (1,42 \ s) = 10,4 \ m$$
$$y_{cm} = v_{oy}t - \frac{1}{2}gt^{2} = 12,4 \ (m/s) \sin 54^{0} \ (1,42 \ s) - 4,9(m/s^{2})1,42^{2}(s)^{2} = 4,3 \ m$$

O problema fornece a localização de um fragmento, m_1 , neste instante: $x_1 = 13,6 \ m$ e $y_1 = 5,9 \ m$. A localização do outro fragmento, de massa $m_2 = M - m_1 = 3,1 \ kg$ é dado por:

$$x_2 = \frac{Mx_{cm} - m_1x_1}{m_2} = 3,7 \ m$$

$$y_2 = \frac{My_{cm} - m_1y_1}{m_2} = 0,9 \ m \ .$$

Obs: nesta análise, supôs-se que a força gravitacional seja a única força externa que atua sobre o sistema, o que permite representar o movimento do CM dos dois fragmentos como uma trajetória parabólica de um projétil submetido à ação dessa força. Se um fragmento tocar o solo, passa a existir uma nova força externa no problema (a força do solo sobre o fragmento), e o centro de massa passa a seguir uma trajetória diferente.

Um amigo afirmou que em uma colisão frontal de um carro a 27 m/s com uma parede de tijolos, ele pode segurar uma criança de 12,0 kg, desde que esteja com o cinto de segurança, e que o compartimento do passageiro do carro pára em 0,050 s. Mostre que a força durante a colisão arrancará a criança de seus braços. Sendo assim, uma criança deve estar sempre em uma cadeira de bebê presa com cinto de segurança no banco de trás do carro.

Solução:

A partir do teorema Momento-Impulso, temos quê: $\vec{F}(\Delta t) = \Delta p = mv_f - mv_i$. A força média necessária para segurar a criança é:

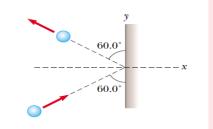
$$\vec{F} = \frac{m(v_f - v_i)}{\Delta t} = \frac{(12kg)(0 - 27m/s)}{(0,050s - 0)} = -6,48.10^3 N$$

Assim, o módulo da força de retardo necessária é $6,44 \times 10^3 \text{ N}.$

Portanto, uma pessoa não é capaz exercer uma força dessa magnitude e um dispositivo de segurança deve ser usado.

Exemplo 5

Uma bola de aço de 3,00 kg atinge uma parede com uma velocidade de 10,0 m/s em um ângulo de 60,0° com a superfície. Ele rebate com a mesma velocidade e ângulo indicados na figura ao lado. Se a bola ficar em contato com a parede por 0,200 s, qual é a força média exercida pela parede sobre a bola? Solução:



$$\Delta p = F\Delta t$$

$$\Delta p_y = m(v_f - v_i) = m(v\cos 60^o) - mv\cos 60^o) = 0$$

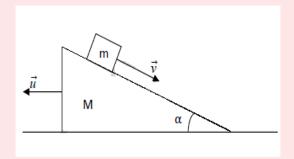
$$\Delta p_x = m(-v\sin 60^o - v\sin 60^o) = -2mv\sin 60^o$$

$$= -2(3,00kg)(10m/s)(0,866)$$

$$= -52.0kq.m/s$$

$$F_{md} = \frac{\Delta p_x}{\Delta t} = \frac{-52,0 \text{ kg.m/s}}{0,200 \text{ s}} = 260 \text{ N}$$

Um bloco de massa m repousa sobre uma plano inclinado de massa M, que por sua vez repousa sobre uma mesa horizontal, como mostra a figura ao lado. Todos as superfícies são sem atrito. Se o sistema parte do repouso, com o ponto P do bloco (m) a uma distância h acima da mesa, ache a velocidade da do plano inclinado no instante em que o ponto P toca a mesa.



Solução:

Temos \vec{v} é a velocidade do bloco com relação ao plano inclinado e \vec{u} é a velocidade do plano inclinado M com relação ao solo. Os componentes da bloco com relação ao solo dados por:

$$v_{sx} = v \cos \alpha - u; v_{sy} = v \sin \alpha$$
$$v_s^2 = v_{sx}^2 + v_{sy}^2$$
$$v_s^2 = (v \cos \alpha - u)^2 + v^2 \sin^2 \alpha$$
$$v_s^2 = v^2 - 2vu \cos \alpha + u^2$$

Pelo princípio de conservação de momento linear (direção x), podemos escrever:

$$P_{0x} = P_x$$

$$0 = Mv_{sx} - Mu$$

$$0 = m(v\cos\alpha - u) - Mu$$

$$v = \frac{(M+m)u}{m\cos\alpha}$$

Utilizando o princípio de conservação de energia mecânica, juntamente com os resultados anteriores. Assim,

$$E_0 = E$$

$$mgh = \frac{mv_s^2}{2} + \frac{Mu^2}{2}$$

$$2mgh = m(v^2 - 2vu\cos\alpha + u^2) - Mu^2$$

$$2mgh = m\left[\frac{(M+m)^2u^2}{m^2\cos^2\alpha} - \frac{2(M+m)u^2\cos\alpha}{m\cos\alpha}\right] + (M+m)u^2$$

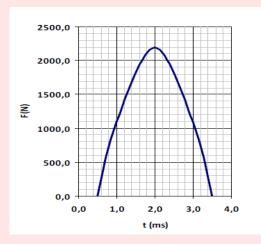
$$2mgh = \frac{(M+m)^2u^2}{m\cos^2\alpha} - 2(M+m)u^2 + (M+m)u^2$$

$$2m^2gh\cos^2\alpha = (M+m)u^2[(M+m) - m\cos^2\alpha];\cos^2\alpha = 1 - \sin^2\alpha$$

$$\Rightarrow u = \left[\frac{2m^2gh\cos^2\alpha}{(M+m)(M+m\sin^2\alpha)}\right]^{1/2}$$

Uma bola de massa igual a 0,4 kg é atingida por um taco, recebendo o impulso indicado na figura abaixo. Determine o módulo da velocidade da bola no momento em que ela abandona o taco.

Obs.: A função representada no gráfico é: $-1, 1 \times 10^9 t^2 + 4, 4 \times 10^6 t - 2, 2 \times 10^3$.



Solução:

O instante que o taco atinge a bola e o instante que a bola abandona o taco são dados por:

$$-1.1 \times 10^9 t^2 + 4.4 \times 10^6 t - 2.2 \times 10^3 = 0$$

Assim teremos:

$$-10^{6}t^{2} + 4,4 \times 10^{3}t - 2,2 = 0$$

$$\Delta = \frac{-4 \times 10^{3} \pm \sqrt{8 \times 10^{6}}}{2(-10^{6})}$$

$$\Rightarrow t_{1} \approx 0,6 \times 10^{-3} \ s \ e \ t_{2} \approx 3,4 \times 10^{-3} \ s$$

Desta forma, podemos calcular a variação do momento linear e consequentemente a velocidade final (admitindo que a velocidade inicial seja nula):

$$J = \Delta P = \int_{0,6 \times 10^{-3}}^{3,4 \times 10^{-3}} (-1,1 \times 10^{9}t^{2} + 4,4 \times 10^{6}t - 2,2 \times 10^{3})dt$$

$$P - P_{0} = \left[\frac{-1,1 \times 10^{9}t^{3}}{3} + 2,2 \times 10^{6}t^{2} - 2,2 \times 10^{3}t\right]_{0,6 \times 10^{-3}}^{3,4 \times 10^{-3}}$$

$$P - P_{0} = \approx 5,2 \ kg.m/s \Rightarrow v = \frac{5,2}{0,4} = 13 \ m/s$$

Um bloco de massa m=10 kg está em repouso sobre uma superfície horizontal sem atrito. Sobre o bloco atua uma força horizontal cujo módulo é dado em função do tempo pela expressão:

$$F = t^2 - ct$$

onde = 4 N/s^2 e c= 1 N/s, t é dado s de F em N. Obtenha: (a) a expressão do impulso em função do tempo, (b) o impulso total nos 4 segundos inciais, (c) a variação do momento linear nos 4 segundos iniciais, (d) a velocidade do bloco no instante t= 4s.

Solução:

(a)

$$J = \Delta P = \int_0^t F dt'$$
$$= \int_0^t (4t'^2 - t') dt'$$
$$\Rightarrow J = \frac{4t^3}{3} - \frac{t^2}{2}.$$

(b)

$$J(4) = \frac{4.4^3}{3} - \frac{4^2}{2} = 77,3 \text{ N.s}$$

(c)

$$\Delta P = 77, 3 \ N.s$$

(d)

$$\Delta P = P - P_0 = 77, 3$$

$$10v = 77, 3 \Rightarrow v = 7, 73m/s$$

Um corpo de massa igual a 5,0 kg colide elasticamente com outro que se encontra inicialmente em repouso e continua sua trajetória no mesmo sentido, porém o módulo da velocidade se reduz a um quinto do módulo inicial. Calcule a massa do corpo atingido. Solução: Utilizando a conservação do momento linear, teremos:

$$\vec{P_i} = \vec{P_f} \Rightarrow P_i = P_f$$
 $m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f}$
 $5v1i = 5.\frac{v_{1f}}{5} + m_2 v_{2f}$
 $4v1i = m_2 v_{2f}$

Como a colisão é elástica, as velocidades relativas de aproximação e afastamento serão iguais:

$$v_{1i} - v_{2i} = v_{2f} - v_{1f}$$
$$v_{1i} = v_{2f} - \frac{v_{1f}}{5}$$
$$v_{2f} = \frac{6v_{1i}}{5}$$

Dos resultados anteriores teremos:

$$4v1i = m_2 \cdot \frac{6v_{1i}}{5}$$
$$\Rightarrow m_2 = \frac{20}{6}kg$$

23

Exemplo 10

Um vagão de carga com massa igual a 40 toneladas se desloca a 2,5 m/s e colide com outro que viaja no mesmo sentido com velocidade igual a 1,5 m/s; a massa do segundo vagão é igual a 25 toneladas. (a) Ache as velocidades dos dois vagões após a colisão e a perda de energia cinética durante a colisão supondo que os dois vagões passam a se mover juntos. (b) Se a colisão fosse elástica, os dois vagões não se uniriam e continuariam a se locomover separados; qual seria neste caso a velocidade de cada vagão?

Solução:

(a) Utilizando a conservação do momento linear, teremos:

$$\vec{P}_i = \vec{P}_f \Rightarrow P_{ix} = P_{fx}$$
 $M_1v1 + M_sv_2 = (M_1 + M_2)v_{12}$
 $40.2, 5 + 25.1, 5 = 65v_{12}$
 $v_{12} \approx 2, 1m/s$

A perda de energia cinética:

$$K_i = \frac{M_1 v_1^2}{2} + \frac{M_2 v_2^2}{2}$$

$$K_i = \left(\frac{40.(2,5)^2}{2} + \frac{25.(1,5)^2}{2}\right).10^3 \approx 153.10^3 J$$

$$K_f = \frac{(M_1 + M_2)v_{12}^2}{2} \approx 143.10^3 J$$

$$\Rightarrow \Delta K = -10^4 J$$

(b) Novamente, utilizando a conservação de momento linear, teremos:

$$\vec{P}_i = \vec{P}_f \Rightarrow P_{ix} = P_{fx}$$
 $M_1v1i + M_sv_{2i} = M_1v1f + M_2v_{2f}$
 $40.2, 5 + 25.1, 5 = 40v1f + 25v_{2f}$
 $40v1f + 25v_{2f} = 137, 5$

Como a colisão é elástica, as velocidades relativas de aproximação e de afastamento devem ser iguais. Assim, teremos:

$$v_{1i} - v_{2i} = v_{2f} - v_{1f}$$
$$v_{2f} - v_{1f} = 1 \Rightarrow v_{2f} = 1 + v_{1f}$$

Utilizando os resultados anteriores, teremos:

$$40v_{1f} + 25(1 + v_{1f}) = 137, 5$$

$$65v_{1f} = 112, 5$$

$$\Rightarrow v_{1f} = 1, 73 \ m/s$$

$$\Rightarrow v_{2f} = 2, 73 \ m/s$$

Um elétron colide elasticamente com um átomo de hidrogênio inicialmente em repouso. Os deslocamentos inicial e final se fazem ao longo do mesmo curso. Que fração de energia cinética inicial do elétron é transferida ao átomo de hidrogênio? A massa do átomo de hidrogênio é 1840 vezes a massa do elétron.

Solução:

Utilizando conservação do momento linear, teremos:

$$\vec{P_i} = \vec{P_f} \Rightarrow P_{ix} = P_{fx}$$

$$m_e v_{ie} = m_e v_{fe} + m_H v_{fH}$$

$$m_e v_{ie} = m_e v_{fe} + (1840m_e) v_{fH}$$

$$v_{ie} = v_{fe} + (1840) v_{fH}$$

Como a colisão é elástica, as velocidades relativas de aproximação e afastamento devem ser iguais. Assim, teremos:

$$v_{ie} - v_{iH} = v_{fH} - v_{fe}$$

$$v_{ie} = v_{fH} - v_{fe}$$

$$v_{ie} = v_{fH} - v_{fe}$$

 $Dos\ resultados\ anteriores\ temos\ \Rightarrow 2v_{ie}=1841v_{fH}$

Para as energias cinéticas teremos:

$$K_{ie} = \frac{m_{ie}v_{ie}^2}{2}$$

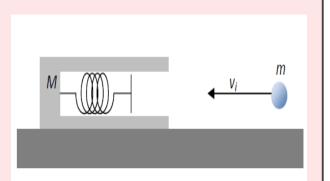
$$K_{fH} = \frac{m_Hv_{fH}^2}{2} = \frac{1840m_e}{2} \left(\frac{2v_{ie}}{1841}\right)^2$$

$$K_{fH} = \frac{3,68.10^3 m_e v_{ie}^2}{3.4.10^6} \approx (1,1.10^{-3})m_e v_{ie}^2$$

A fração de energia cinética é dada por:

$$\begin{split} \frac{K_{fH}}{K_{ie}} &= 2.\frac{(1,1.10^{-3})m_ev_{ie}^2}{m_{ie}v_{ie}^2} \approx 2,2.10-3\\ &\Rightarrow \frac{K_{fH}}{K_{ie}} \approx 0,22\% \end{split}$$

veloci-Uma bola de massa dade v_i é projetada no cano uma espingarda de mola, de massa inicial menteem repouso superfície uma sematrito (veja figura ao lado). Α massa m adere ao cano no ponto da compressão máxima da mola. Nenhuma enerperdida atrito. emQue fração de energia cinética inicial dabola fica armazenada na mola?



Solução:

Utilizando a conservação do momento linear, teremos:

$$\vec{P}_i = \vec{P}_f \Rightarrow P_i = P_f$$

$$mv_i = (m+M)v$$

$$v = \frac{mv_i}{m+M}$$

Como não há perdas de energia por atrito, teremos:

$$K_{i} = K_{f} + U_{el}$$

$$\frac{mv_{i}^{2}}{2} = \frac{(m+M)v^{2}}{2} + U_{el}$$

$$U_{el} = \frac{mv_{i}^{2}}{2} - \frac{(m+M)v^{2}}{2}$$

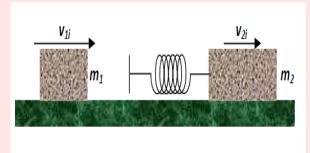
$$U_{el} = \frac{mv_{i}^{2}}{2} - \frac{(m+M)}{2} \cdot \frac{m^{2}v_{i}^{2}}{(m+M)^{2}}$$

$$U_{el} = \frac{mMv_{i}^{2}}{2(m+M)}$$

Assim a fração de energia cinética inicial que fica armazenada na mola é dada por:

$$\begin{split} \frac{U_{el}}{K_i} &= \frac{\frac{mMv_i^2}{2(m+M)}}{\frac{mv_i^2}{2}} \\ \Rightarrow \frac{U_{el}}{K_i} &= \frac{M}{m+M} \end{split}$$

Um bloco de massa $m_1=3,0\ kg$ desliza ao longo de uma mesa sem atrito com velocidade $v_1=15\ \mathrm{m/s}$. Na frente dele, e movendo-se na mesma direção e sentido, existe um bloco de massa $m_2=6\ \mathrm{kg}$ que se move com velocidade de m/s. A mola indicada na figura ao lado, possui massa desprezível e uma constante elástica $k=1500\ \mathrm{N/m}$. A massa reduzida M_r de um sistema de duas partículas é definida pela expressão:



$$M_r = \frac{m_1 m_2}{m_1 + m_2}$$

- (a) Obtenha uma expressão para a energia cinética de um sistema de duas massas em relação ao referencial do centro de massa em função da massa reduzida M_r e em função da velocidade relativa v_r .
- (b) Encontre o valor numérico da deformação máxima da mola depois do impacto. Solução:
- (a) Com relação ao centro de massa, as velocidades dos dois blocos são dadas por:

$$v_1' = v_1 - v_{cm}$$

A velocidade do centro de massa é dada pela média ponderada:

$$v_{cm} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

A energia cinética, com relação ao centro de massa do sistema antes da colisão é dada por:

$$K_i = \frac{m_1(v_1 - v_{cm})^2}{2} + \frac{m_2(v_2 - v_{cm})^2}{2}$$

$$K_i = \frac{m_1v_1^2 + m_2v_2^2}{2} - (m_1v_1 + m_2v_2)v_{cm} + \frac{(m_1 + m_2)v_{cm}^2}{2}$$

Utilizando a equação anterior da v_{cm} :

$$K_{i} = \frac{m_{1}v_{1}^{2} + m_{2}v_{2}^{2}}{2} - (m_{1}v_{1} + m_{2}v_{2}) \cdot \left(\frac{m_{1}v_{1} + m_{2}v_{2}}{m_{1} + m_{2}}\right) + \frac{(m_{1} + m_{2})}{2} \cdot \left(\frac{m_{1}v_{1} + m_{2}v_{2}}{m_{1} + m_{2}}\right)^{2}$$

$$K_{i} = \frac{(m_{1}v_{1}^{2} + m_{2}v_{2}^{2}) \cdot (m_{1} + m_{2})}{2 \cdot (m_{1} + m_{2})} - \frac{(m_{1}^{2}v_{1}^{2} + 2m_{1}m_{2}v_{1}v_{2} + m_{2}^{2}v_{2}^{2}) \cdot (m_{1} + m_{2})}{2 \cdot (m_{1} + m_{2})}$$

$$K_{i} = \frac{(m_{1}m_{2})}{2 \cdot (m_{1} + m_{2})} \cdot (v_{1} - v_{2})^{2}$$

$$K_{i} = \frac{M_{r}v_{r}^{2}}{2} \; ; \; M_{r} = \frac{(m_{1}m_{2})}{(m_{1} + m_{2})} \; ; \; v_{r} = v_{1} - V_{2}$$

(b) Quando dos dois blocos colidem o sistema constituído pelas duas massas que comprimem a mola tem energia potencial elástica U_{el} igual a energia cinética inicial K_i , portanto:

$$U_{el} = \frac{kx^2}{2} = \frac{M_r v_r^2}{2}$$
$$750x^2 = \frac{18.10^2}{2.9} \Rightarrow x \approx 0,365 \text{ m}$$

27

Exemplo 14

Um dêuteron é uma partícula nuclear constituída por um próton e um nêutron. Sua massa é cerca de $3,4.10^{-24}$ g. Um dêuteron, acelerado por um ciclotron a uma velocidade de 10^9 cm/s, colide com um outro dêuteron em repouso.

(a) Se as duas partículas permanecem juntas formando um núcleo de hélio, qual é a velocidade do núcleo resultante?

Em seguida o núcleo de hélio desintegra-se em um nêutron com massa aproximada de $1,7.10^{-24}$ g e um isótopo de hélio de massa igual a $5,1.10^{-24}$ g.

(b) Se o nêutron é emitido em uma direção perpendicular à direção da velocidade original, com velocidade de $5,0.10^8~{\rm cm/s},$ encontre o módulo e a direção da velocidade do isótopo de hélio.

Solução:

(a) Utilizando a conservação do momento linear, teremos:

$$\vec{P_i} = \vec{P_f} \Rightarrow P_{ix} = P_{fx}$$

$$m_D v_{iD} = 2m_D v_{fD}$$

$$\Rightarrow v_{fD} = \frac{10^9}{2} cm/s$$

(a) Utilizamos também, neste caso, a conservação do momento linear. Assim teremos:

$$\vec{P_i} = \vec{P_f}$$

$$P_{ix} = P_{fx}$$

$$2m_D v_D = m'_{He} v_x \Rightarrow 6, 8.10^{-24} \cdot \frac{10^9}{2} = 5, 1.10^{-24} v_x$$

$$\Rightarrow v_x \approx 6, 67.10^8 \text{ cm/s}$$

$$P_{iy} = P_{fy}$$

$$0 = m_n v_n + m'_{He} v_y \Rightarrow 0 = 1, 7.10^{-24} \cdot 5.10^8 + 5, 1.10^{-24} v_y$$

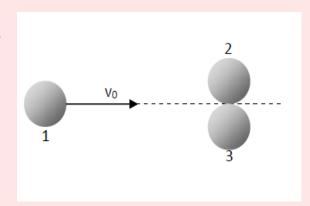
$$\Rightarrow v_y \approx -1, 67.10^8 \text{ cm/s}$$

A direção é dada por:

$$\alpha = tan^{-1} \frac{1,67}{6,67} \approx 14^{\circ}$$

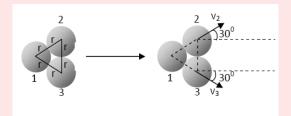
Uma bola com velocidade inicial de 10 m/s colide elasticamente com duas outras idênticas, cujos centros de massa estão em uma direção perpendicular à velocidade inicial e que estão inicialmente em contato (figura ao lado). A primeira bola está na linha de direção do ponto de contato e não há atrito entre as bolas. Determine a velocidade das três bolas após a colisão.

Obs.: As direções das duas bolas originalmente estacionárias podem ser obtidas considerando-se a direção do impulso que elas recebem durante a colisão.



Solução:

Nos instantes imediatamente antes e imediatamente depois do impacto, temos as seguintes configurações:



Como as bolas possuem a mesma massa, podemos concluir que a bola 1 não terá velocidade na direção y. Assim, utilizando a conservação do momento linear, teremos:

$$No\ eixo\ y:\ \vec{P_i} = \vec{P_f} \Rightarrow P_{iy} = P_{fy}$$

$$0 = m_2v_{2y} + m_3v_{3y}$$

$$v_{2y} = -v_{3y} \Rightarrow |v_{2y}| = |v_{3y}| = v$$

$$No\ eixo\ x:\ \vec{P_i} = \vec{P_f} \Rightarrow P_{ix} = P_{fx}$$

$$m_1v_0 = m_2v_{2x} + m_3v_{3x}$$

$$v_{2x} = v_{3x} = v\cos 30^o$$

$$10 = v_{1x} + 2v\cos 30^o \to 10 = v_{1x} + v\sqrt{3}$$

$$Segundo\ v_2\ temos:$$

$$10\cos 30^o = v - v_{1x}\cos 30^o$$

$$5\sqrt{3} = v - \frac{v_{1x}\sqrt{3}}{2}$$

$$5\sqrt{3} = v - \frac{v_{1x}\sqrt{3}}{2}$$

$$15 = v\sqrt{3} - \frac{3v_{1x}}{2} \Rightarrow v\sqrt{3} = 15 + \frac{3v_{1x}}{2}$$

$$Calculando\ v_{1x}:$$

$$\to 10 = v_{1x} + 15 + \frac{3v_{1x}}{2}$$

$$-5 = \frac{5v_{1x}}{2} \Rightarrow v_{1x} = -2\ m/s$$

Temos: $v_{1x} = -2 \text{ m/s}$ e $v = 4\sqrt{3} \approx 6,9 \text{ m/s}$

1.7 Resumo 29

1.7 Resumo

O Momento Linear \vec{p} de uma partícula de massa m movendo-se com uma velocidade \vec{v} é

$$\vec{p} = m\vec{v}$$

O vetor da **Posição do Centro de Massa** (\vec{r}_{CM}) de um sistema de partículas é definido como

$$\vec{r}_{CM} = \frac{1}{M} \sum_{i} m_i \vec{r}_i$$

onde M é a massa total do sistema, m_i é a massa e r_i é o vetor posição da i-ésima partícula. \vec{r}_{CM} também pode ser obtido a partir da expressão com integral:

$$\vec{r}_{CM} = \frac{1}{M} \int \vec{r} dm$$

O vetor da Velocidade do Centro de Massa (\vec{v}_{CM}) para um sistema de partículas é:

$$\vec{v}_{CM} = \frac{1}{M} \sum_{i} m_i \vec{v}_i$$

O momento total (\vec{P}_{total}) de um sistema de partículas é igual à massa total M multiplicado pela velocidade do centro de massa:

$$\vec{P}_{total} = M \vec{v}_{CM}$$

A **segunda lei de Newton** aplicada a um sistema de partículas é descrita pela seguinte expressão:

$$\sum \vec{F}_{ext} = M\vec{a}_{CM}$$

onde a_{CM} é a aceleração do centro de massa e $\sum \vec{F}_{ext}$ é soma sobre todas as forças externas. O centro de massa se move como uma partícula imaginária de massa M sob a influência da força externa resultante no sistema.

O **Impulso** transmitido a uma partícula por uma força resultante $\sum \vec{F}$ é igual a integral da força para um intervalo de tempo t:

$$\vec{I} = \int_{t_i}^{t_f} \vec{F} dt$$

Uma colisão inelástica é aquela para a qual a energia cinética total do sistema de partículas em colisão não é conservada. Uma colisão perfeitamente inelástica é aquela em que as partículas em colisão se unem após a colisão. Uma colisão elástica é aquela em que a energia cinética do sistema é conservada.

Sistema não-Isolado: Se um sistema interage com o ambiente no sentido de que há uma força externa atuando no sistema, o comportamento desse sistema é descrito pelo **Teorema** do Momento-Impulso:

$$\vec{I} = \Delta \vec{P}_{total}$$

Sistema Isolado: O princípio da conservação do momento linear indica que o momento total de um sistema isolado (sem forças externas) é conservado, independentemente da natureza das forças que agem entre os membros do sistema:

$$M \vec{v}_{CM} = \vec{P}_{total} = constante \rightarrow Quando \sum \vec{F}_{ext} = 0$$

No caso de um sistema de duas partículas, este princípio pode ser expresso como:

$$\vec{P}_{1i} + \vec{P}_{2i} = \vec{P}_{1f} + \vec{P}_{2f}$$

O sistema pode ser isolado em termos de momento, mas não isolado em termos de energia, como no caso de colisões inelásticas.

Referências Bibliográficas

Bauer, W.; Westfall, G. D. e Dias, W. (2012) Física Para Universitários, Mecânica, Bookman, São Paulo.

Ling, S. J.; Sanny, J. e Moebs, W. (2018) University Physics Volume 1, openstax, Hosuton, Texas.

Nussenzveig, H. M. (2008) Curso de Física Básica 1, Mecânica, Editora Blucher, São Paulo.

Resnick, S.; Halliday, D. e Krane, K. (2003) Física 1, Editora LTC, São Paulo.

Serway, R. A. e Jewett, J. W. (2018) Física Para Cientistas E Engenheiros, Volume 1, Mecânica, Editora Cengage, São Paulo.